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Abstract— Diphtheria is a bacterial infection that can cause 

severe respiratory illnesses leading to death if left untreated. 
Despite the availability of effective vaccines, diphtheria still poses 
a significant public health challenge in many parts of the world. 
Mathematical modelling is a powerful tool that enables 
researchers to understand the dynamics of diphtheria 
transmission and evaluate the effectiveness of different control 
measures. In this study, investigation into transmission dynamics 
to inform effective strategies for controlling and preventing 
outbreaks of diphtheria is considered. By developing a 
mathematical model that accurately represents the dynamics of 
diphtheria transmission in a population, we can predict how 
diphtheria will spread under different scenarios and evaluate the 
effectiveness of different control measures. Effective strategies of 
controlling and prevention was modelled resulting into blocks of 
dynamics compartments. Basic properties of the model were also 
investigated, analyzed and reported. The numerical simulation 
was carried out to study the effect of the factors responsible for 
causes, spread as well as control and prevention of the disease. The 
analysis highlights the importance of vaccination coverage, 
waning immunity, and susceptibility to the disease in diphtheria 
transmission. The models also suggest that a combination of 
vaccination, treatment, and contact tracing can be effective in 
controlling diphtheria outbreaks. This information can then be 
used to inform public health policies and strategies for preventing 
outbreaks and reducing the burden of diphtheria on public health. 
This research also identifies some gaps in our understanding 
regarding the role of asymptomatic carriers in diphtheria 
transmission dynamics. Further research is needed to address 
these gaps using mathematical modelling approaches. 

 
Index Terms— Diphtheria, Mathematical modelling, Strategies, 

Vaccination, Vaccine-induced immunity. 

1. Introduction 
Diphtheria is a highly contagious vaccine-preventable 

bacterial infection caused by Corynebacterium diphtheriae that 
primarily infects the throat (pharynx and tonsils) and nose [1]. 
The bacterium has an estimated basic reproduction number of 
1.7–4.3 (median, 2.6). Although diphtheria is treatable if 
detected early, it can lead to severe complications such as 
respiratory failure, heart problems and even deaths (case- 

 
fatality ratio among untreated, never vaccinated cases 28.8–
29.2%) [2]. It remains a health problem in low-resource 
countries, particularly where vaccination uptake and coverage 
are low and where sanitation conditions remain poor [3]. On 
December 1, 2022, the Nigeria Centre for Disease Control 
(NCDC) was notified of suspected diphtheria outbreaks in two 
of the largest states in Nigeria, Lagos, and Kano, with a 
combined population of over 30 million. As of February 3, 
2023, 216 confirmed cases and 40 persons have died (case 
fatality rate of 18.5%) from the infection in the current outbreak 
in Nigeria [4]. This ongoing outbreak mainly occurred in 
children aged 2 to 14 (85.2%) and in Kano state (97.7%). It is 
worth mentioning that only a fraction, 27 (12.5%) of the 
confirmed cases, were fully vaccinated with diphtheria-tetanus-
pertussis (DTP3)—a three-dose vaccine [4]. The Nigerian 
outbreak has underscored the importance of vaccination and 
herd immunity and has rekindled the discussion around low 
vaccination uptake due to COVID-19 in many low-resource 
countries and consequent opportunistic outbreaks. 

Diphtheria vaccination is one of the pentavalent vaccines on 
the Nigerian childhood immunization schedule. However, 
vaccination coverage estimates have been on the decline 
globally [5]. DTP3 vaccination rate dropped from 86% in 2019 
to 81% in 2021 [6]. Despite the efforts to reach the diphtheria 
herd immunity threshold (75–80%) [7], the overall vaccination 
coverage of 56% in Nigeria remains suboptimal, with 
significant variations in DPT3 immunization coverage across 
Nigerian states (<20% to 80%) [6]. Essential vaccination 
coverage and uptake among Nigeria under-fives are very low 
[8]. Evidence suggests that maternal education, common 
misconceptions or beliefs, household decision-making 
dynamics (influence of male partner and family), 
misinformation and mistrust in vaccines, adverse events 
following immunization, unavailability of vaccines, proximity 
to health facilities and shortage of healthcare workers are 
associated with low vaccine uptake and differences across 
states [8], [9]. Furthermore, COVID-19 pandemic impacted 
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vaccine uptake by creating barriers to accessing vaccination 
services and decreasing immunization demand and uptake 
among caregivers. Movement restrictions and lockdowns also 
resulted in decreased general healthcare service delivery, 
increased transportation costs, fewer engagements to promote 
vaccine uptake, and the discontinuation of mobile vaccination 
campaigns that targeted hard-to-reach communities [6]. Thus, 
the decline in the vaccination rate has put vulnerable people, 
such as children and unvaccinated individuals living in poor 
sanitary conditions at a greater risk. The World Health 
Organization (WHO) also noted the components in the recent 
technical report with proposals to strengthen global emergency 
preparedness, response, and resilience [10].  

A model assessing the impact of booster doses in 
contaminated environments is developed and reported by [11]. 
Through numerical simulations and sensitivity analyses, 
parameters affecting disease dynamics are identified. Results 
indicate significant reduction in diphtheria with booster doses. 
In resource-limited settings, prioritizing disinfection, 
screening/treatment, and booster vaccination is recommended. 
Overall, the study underscores the importance of booster 
vaccination in mitigating diphtheria transmission, particularly 
in contaminated environments. The [12] examined the global 
stability of two Chikungunya virus (CHIKV) dynamics models 
incorporating adaptive immune response. The models, one five-
dimensional and the other six-dimensional with latency, 
consider different types of infected cells. A threshold, θ0, 
determines CHIKV clearance or persistence. Both models 
establish CHIKV-free and CHIKV-present steady states. Using 
Lyapunov function, it's proven that when θ0≤1, the CHIKV-
free state is globally stable, and when θ0>1, the endemic state 
is stable. Numerical simulations validate these results, 
contributing to the understanding of CHIKV dynamics and 
potential control strategies. The diphtheria outbreak serves as a 
reminder of the ongoing threat of infectious diseases and the 
importance of vaccination and herd immunity in preventing 
their spread [13]. Nigeria has recorded diphtheria outbreaks in 
the past, notably in 2011 and 2022. In 2023, a previous outbreak 
of diphtheria was recorded between January and April 2023 
affecting 21 of the 36 states and the FCT. Details of the 
outbreak have been published on Disease Outbreak News [14].  

UNICEF Nigeria intensified efforts in August 2023 to 
combat a spreading diphtheria outbreak across 27 states. By 
July 2023, 3,850 suspected cases were reported, with 1,387 
confirmed, resulting in 122 deaths (8.7% fatality rate). The 
outbreak mainly affected children aged 2 to 14, with Kano, 
Yobe, Katsina, Lagos, FCT, Sokoto, and Zamfara bearing 
98.0% of cases. Only 22% of confirmed cases received routine 
childhood vaccinations, [15]. UNICEF collaborates closely 
with Nigeria's Disease Control Center and health agencies, 
focusing on risk communication, vaccine transportation, health 
worker training, and urging parents for routine immunizations. 
Despite challenges, UNICEF remains committed to tackling the 
outbreak and ensuring a healthier future for Nigerian children. 
In Indonesia, the 2017 diphtheria outbreak in Jakarta prompted 
a study to understand transmission dynamics and control 
strategies [16]. Researchers analyzed surveillance data and used 

mathematical modeling to estimate susceptibility and 
transmission parameters [17]. They found that children aged 0 
to 4 had the highest susceptibility, with asymptomatic carriers 
contributing significantly to transmission. Prompt tracing and 
treatment of cases and contacts were vital for controlling the 
outbreak, emphasizing the importance of maintaining high 
vaccination coverage and administering booster doses to 
prevent future outbreaks. In Kano, Nigeria, a surge in diphtheria 
cases has overwhelmed Médecins Sans Frontières (MSF) 
hospitals, with Dr. Hashim Juma Omar treating six afflicted 
children daily. The outbreak, escalating since May 2022, has 
caused over 600 deaths, primarily in children, and affected 116 
Local Government Areas (LGAs) across 19 states. Contributing 
factors include population growth, climate-related hygiene 
declines, and inadequate vaccination coverage [18]. A 
mathematical model of the disease is proposed, categorizing 
individuals based on susceptibility, vaccination status, 
infection, and recovery. Key factors for effective control 
include monitoring transmission rate, birth rate, and immunity 
waning rate in imperfectly vaccinated individuals [19]. Their 
results suggest that periodic booster administration lowers 
disease proliferation, but treatment of infected individuals and 
screening of asymptomatic carriers yields maximal disease 
control. 

Despite the effort of previous authors, there is still the need 
to study diphtheria transmission dynamics for effective 
prevention and control strategies, with a focus on vaccination 
and vaccine-induced immunity, so as to develop a 
comprehensive understanding of how diphtheria spreads within 
populations and to identify optimal strategies for intervention. 
Therefore, this study aims to assess the impact of vaccination 
coverage, vaccine efficacy, and immunity duration on 
diphtheria transmission dynamics. By simulating various 
scenarios and interventions, the study seeks to inform public 
health efforts aimed at reducing diphtheria incidence and 
mortality through targeted vaccination campaigns and other 
control measures. 

2. Modelling of the Problem 
The early model is modified to include Vaccination and 

Vaccine-induced immunity. The following assumptions were 
made: Susceptible individuals (S) can become infected (I) at a 
rate proportional to the transmission rate (β) and the number of 
susceptible and infected individuals (SI/N). Infected individuals 
(I) recover (R) at a rate (γ). Susceptible individuals (S) can 
become vaccinated (V) at a rate proportional to the vaccine 
coverage rate (v) and the reduction in susceptibility due to 
vaccination (q), and the number of susceptible and vaccinated 
individuals (SV/N). Vaccinated individuals (V) can also become 
infected (I) at the same rate (β) as susceptible individuals, but 
with reduced susceptibility due to vaccination. The 
compartmental diagram for the mathematical model describing 
modification of early diphtheria dynamics to include 
Vaccination and Vaccine-induced immunity as described above 
is shown in Fig. 1. 
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Fig. 1.  Compartmental diagram for early diphtheria dynamics with 

vaccination 
 
Hence, we have the differential equations describing early 

diphtheria dynamics with vaccination and vaccine-induced 
immunity are as follows: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= Λ −
𝛽𝛽𝑑𝑑𝛽𝛽
𝑁𝑁

−
𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣
𝑁𝑁

− 𝜇𝜇𝑑𝑑                      

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=
𝛽𝛽𝑑𝑑𝛽𝛽
𝑁𝑁

+ (1 − α)νV − (μ + δ)I −  𝛾𝛾𝛽𝛽

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛽𝛽 + 𝛼𝛼𝛼𝛼𝑣𝑣 − 𝜇𝜇𝑑𝑑                                  

𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑

=
𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣
𝑁𝑁

− (1 − 𝛼𝛼)𝛼𝛼𝑣𝑣 − 𝛼𝛼𝛼𝛼𝑣𝑣 − 𝜇𝜇𝑣𝑣    

                        (1) 

 
with 𝑑𝑑(0) = 0.9, 𝛽𝛽(0) = 0.1,𝑑𝑑(0) = 0,𝑣𝑣(0) = 0 
 
Total population is given by 𝑁𝑁(𝑑𝑑) = 𝑑𝑑(𝑑𝑑) +  𝛽𝛽(𝑑𝑑) +  𝑑𝑑(𝑑𝑑) +

 𝑣𝑣(𝑑𝑑) at any time 𝑑𝑑. 
 
The term 𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣/𝑁𝑁 represents the rate at which susceptible 

individuals become vaccinated due to vaccination efforts. This 
model allows us to explore the impact of vaccination and 
vaccine-induced immunity on the spread of diphtheria in the 
population. These equations describe the flow of individuals 
between the different populations and the effects of vaccination 
and natural immunity.  

3. Analysis of the Model 

A. Positivity and Boundedness 
For the model (1) to be epidemiologically meaningful and 

mathematically well posed, it is necessary to establish that all 
solutions of system with positive initial data will remain 
positive for all times 𝑑𝑑 >  0. 

 
Positivity of Solution: 
From the last three equations of model (1) 
 

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

≥ −(μ + δ + 𝛾𝛾)𝛽𝛽 ⟹ 𝛽𝛽(𝑑𝑑) ≥ 𝛽𝛽(0)𝑒𝑒−(μ+δ+𝛾𝛾)t             (2) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≥ −𝜇𝜇𝑑𝑑 ⟹ 𝑑𝑑(𝑑𝑑) ≥ 𝑑𝑑(0)𝑒𝑒−𝜇𝜇𝜇𝜇                                      (3) 

 
𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑

≥ −(𝛼𝛼 + 𝜇𝜇)𝑣𝑣 ⟹ 𝑣𝑣(𝑑𝑑) ≥ 𝑣𝑣(0)𝑒𝑒−(𝜈𝜈+𝜇𝜇)𝜇𝜇                    (4) 

 
And by the first equation 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≥  −�
𝛽𝛽𝛽𝛽
𝑁𝑁
−
𝑣𝑣𝑣𝑣𝑣𝑣
𝑁𝑁

− 𝜇𝜇� 𝑑𝑑 ⟹
𝑑𝑑𝑑𝑑
𝑑𝑑
≥ −�

𝛽𝛽𝛽𝛽
𝑁𝑁
−
𝑣𝑣𝑣𝑣𝑣𝑣
𝑁𝑁

− 𝜇𝜇�𝑑𝑑𝑑𝑑 

 
That is 
 
𝑑𝑑𝑑𝑑
𝑑𝑑
≥ −�

𝛽𝛽
𝑁𝑁
𝛽𝛽(0)𝑒𝑒−(𝛍𝛍+𝛅𝛅+𝛾𝛾)𝐭𝐭 −

𝑣𝑣𝑣𝑣
𝑁𝑁
𝑣𝑣(0)𝑒𝑒−(𝜈𝜈+𝜇𝜇)𝜇𝜇 − 𝜇𝜇� 𝑑𝑑𝑑𝑑 

 
Thus 

𝑑𝑑(𝑑𝑑) ≥
𝑣𝑣𝑣𝑣𝑣𝑣(0)
𝑁𝑁(𝛼𝛼 + 𝜇𝜇) �𝑒𝑒

−(𝜈𝜈+𝜇𝜇)𝜇𝜇 − 1� 

+
𝛽𝛽𝛽𝛽(0)

𝑁𝑁(μ + δ + 𝛾𝛾) �𝑒𝑒
−(𝛍𝛍+𝛅𝛅+𝛾𝛾)𝒕𝒕 − 1� − 𝜇𝜇𝑑𝑑 + 𝑑𝑑(0)    (5) 

 
It could be observed from equations (2)-(5) that,  
 
(1) 𝑑𝑑(𝑑𝑑) ≥ 𝑑𝑑(0), 𝛽𝛽(𝑑𝑑) ≥ 𝛽𝛽(0),𝑑𝑑(𝑑𝑑) ≥ 𝑑𝑑(0),𝑣𝑣(𝑑𝑑) ≥

𝑣𝑣(0),  when 𝑑𝑑 = 0  
 
(2) max

𝑖𝑖
𝜙𝜙(𝑑𝑑)𝑖𝑖 = 𝜙𝜙(0)𝑖𝑖 ∀ 𝑖𝑖 at 𝑑𝑑 ≥ 0,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1⋯ 4,𝜙𝜙 =

(𝑑𝑑, 𝛽𝛽,𝑑𝑑,𝑣𝑣) 
 
It follows that all solutions of the model are non-negative. 
 
Boundedness: 
Therefore, adding all the equations of the system together, 

gives, 

Table 1 
Biological description of model parameters 

Parameters Biological significance Values 
𝚲𝚲 Recruitment into susceptible class  0.2 per day 
𝛽𝛽 Transmission rate  0.2 infections per susceptible per day 
𝛼𝛼 Vaccination rate  0.05 vaccinations per susceptible per day 
𝛼𝛼 Vaccine efficacy  0.8 80% efficacy) 
𝜇𝜇 Natural death rate  0.001 births per individual per day 
𝛿𝛿 Disease induced death rate  0.008 deaths per individual per day 
𝛾𝛾 Recovery rate  0.1 recoveries per day 
𝑣𝑣 Reduction in susceptibility due to vaccination  0.2 per day 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑
= Λ −

𝛽𝛽𝑑𝑑𝛽𝛽
𝑁𝑁

−
𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣
𝑁𝑁

− 𝜇𝜇𝑑𝑑 +
𝛽𝛽𝑑𝑑𝛽𝛽
𝑁𝑁

+ (1 − α)νV − (μ + δ)I −  𝛾𝛾𝛽𝛽 + 𝛾𝛾𝛽𝛽 + 𝛼𝛼𝛼𝛼𝑣𝑣

− 𝜇𝜇𝑑𝑑 +
𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣
𝑁𝑁

− (1 − 𝛼𝛼)𝛼𝛼𝑣𝑣 − 𝛼𝛼𝛼𝛼𝑣𝑣 − 𝜇𝜇𝑣𝑣

= Λ − 𝜇𝜇𝑑𝑑 − (μ + δ)I − 𝜇𝜇𝑑𝑑 − 𝜇𝜇𝑣𝑣 
 

That is 
 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑑𝑑 + 𝛽𝛽 + 𝑑𝑑 + 𝑣𝑣) = Λ − 𝜇𝜇(𝑑𝑑 + 𝛽𝛽 + 𝑑𝑑 + 𝑣𝑣) − (δ)I 
 
If we assume that the rate of recruitment into susceptible 

class is more that the death due the disease, 𝛬𝛬 ≫ δ thus 
 

𝑑𝑑𝑁𝑁
𝑑𝑑𝑑𝑑

≥  −𝜇𝜇𝑁𝑁 

 
Integrating the above, 
 

𝑁𝑁(𝑑𝑑) ≥ 𝑁𝑁(0)𝑒𝑒−𝜇𝜇𝜇𝜇 
 
Equation above implies that maximum total population is the 

population before the outbreak of the disease. It follows that the 
feasible solution sets of the model remain in the regions: Γ =
{(𝑑𝑑,𝐸𝐸, 𝛽𝛽,𝑑𝑑) ∈ 𝑑𝑑+4 ∶ 0 ≤  𝑑𝑑 + 𝛽𝛽 + 𝑑𝑑 + 𝑣𝑣 = 𝑁𝑁 ≤  Λ 𝜇𝜇⁄ }. 
Observe that if the population is higher than the threshold level, 
the population reduces to the carrying capacity. If the 

population is less than the threshold level, then the solutions of 
the model remain in the invariant region for all 𝑑𝑑 >  0. 

B. Equilibrium States 
Obtaining the equilibrium points of disease mathematical 

models is crucial. These points play a pivotal role in decision-
making regarding disease control and potential elimination 
strategies. In the realm of mathematical modeling for infectious 
diseases, two types of equilibrium points are particularly 
significant: the Disease-Free Equilibrium (DFE) point and the 
Disease-Endemic Equilibrium (DEE) point. Understanding and 
analyzing these equilibrium points provide valuable insights 
into the dynamics and management of infectious diseases 
1) The Disease-Free Equilibrium Point (DFEP) 

The Disease-Free Equilibrium (DFE) refers to a state in 
mathematical models of infectious diseases where there are no 

infected individuals present in the population. It represents a 
point of stability where the disease is not actively spreading. In 
the context of disease control and epidemiology, understanding 
and analyzing the Disease-Free Equilibrium is crucial for 
assessing the effectiveness of interventions aimed at preventing 
or eliminating the spread of infectious diseases. In our case, we 
take 𝛽𝛽 = 0, therefore, 

 

𝑣𝑣 = 𝑑𝑑 = 0, 𝑑𝑑 =
Λ
𝜇𝜇

 

 
Hence, at disease free equilibrium, 
 

(𝑑𝑑, 𝛽𝛽,𝑑𝑑,𝑣𝑣) = �
Λ
𝜇𝜇

, 0, 0, 0�                                      (6) 

 
2) The Endemic Equilibrium Point (EEP) 

The Endemic Equilibrium Point (EEP) is a concept in 
mathematical models of infectious diseases representing a 
stable state where the disease persists within a population at a 
steady level over time. Unlike the Disease-Free Equilibrium 
(DFE), which indicates the absence of infected individuals, the 
EEP reflects a scenario where the disease is actively circulating 
within the population, but the transmission and recovery rates 
balance out to maintain a constant level of infection. 
Understanding the dynamics and characteristics of the Endemic 
Equilibrium Point is essential for assessing long-term disease 
control strategies and predicting the impact of interventions on 
disease prevalence. Thus, we solve the entire system of 
equations. We have, 

C. Stability Analysis 
In the context of diphtheria, stability analysis of the SIRV 

Susceptible-Infectious-Recovered-Vaccinated) model helps 
predict whether the disease will die out or persist within the 
population in the long run by examining the equilibrium 
solutions of the system. In this model, there are three 3 
equilibrium points, including the disease-free equilibrium DFE 
and endemic equilibrium EE. At the DFE, the Jacobian of the 
system of equation is computed and evaluated at DFE point. 

 

�

𝑑𝑑
𝛽𝛽
𝑑𝑑
𝑣𝑣

� =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

⎣
⎢
⎢
⎢
⎡
𝛬𝛬

𝜇𝜇
0
0
0⎦
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑁𝑁

𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇

𝛽𝛽

 𝛬𝛬 𝛽𝛽 − 𝑁𝑁 𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)
(𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇)𝛽𝛽

𝛾𝛾
𝛬𝛬 𝛽𝛽 − 𝑁𝑁 𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇) 

(𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇)𝛽𝛽 𝜇𝜇
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑁𝑁 �

𝜇𝜇 +  𝛼𝛼

𝛼𝛼 𝑣𝑣
�

𝛼𝛼
(1 − 𝛼𝛼)�Λ 𝛼𝛼 𝑣𝑣 −  𝜇𝜇 𝑁𝑁(𝜇𝜇 +  𝛼𝛼)�

�( 𝛿𝛿 +  𝛾𝛾 +  𝜇𝜇)𝛼𝛼 𝑣𝑣 − (𝛼𝛼 𝛼𝛼 + 𝜇𝜇)𝛽𝛽� (𝜇𝜇 +  𝛼𝛼)

 
�𝛼𝛼𝑣𝑣(𝛾𝛾 + (𝛿𝛿 +  𝜇𝜇)𝛼𝛼)  − 𝛽𝛽𝛼𝛼(𝜇𝜇 + 𝛼𝛼)��𝛬𝛬𝑣𝑣𝛼𝛼 − 𝜇𝜇𝑁𝑁(𝜇𝜇 + 𝛼𝛼)�

𝑣𝑣 �( 𝛿𝛿 +  𝛾𝛾 +  𝜇𝜇)𝛼𝛼 𝑣𝑣 − (𝛼𝛼 𝛼𝛼 + 𝜇𝜇)𝛽𝛽� (𝜇𝜇 +  𝛼𝛼)𝜇𝜇
�(𝛿𝛿 +  𝛾𝛾 +  𝜇𝜇)𝛼𝛼 𝑣𝑣 −  𝛽𝛽 (𝜇𝜇 +  𝛼𝛼)��𝛬𝛬 𝛼𝛼 𝑣𝑣 −  𝑁𝑁𝜇𝜇(𝜇𝜇 +  𝛼𝛼)�

𝑣𝑣 𝛼𝛼 �( 𝛿𝛿 +  𝛾𝛾 +  𝜇𝜇)𝛼𝛼 𝑣𝑣 − (𝛼𝛼 𝛼𝛼 + 𝜇𝜇)𝛽𝛽� (𝜇𝜇 +  𝛼𝛼) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫
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𝐽𝐽|�𝑆𝑆0,𝐼𝐼0,𝑅𝑅0,𝑉𝑉0� =

⎣
⎢
⎢
⎢
⎢
⎡−𝜇𝜇

0
0
0

 

−
Λ𝛽𝛽
𝑁𝑁𝜇𝜇

Λ𝛽𝛽
𝑁𝑁𝜇𝜇

− (𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)

𝛾𝛾
0

 

0
0
−𝜇𝜇
0

 

−
𝛼𝛼𝑣𝑣Λ
𝑁𝑁𝜇𝜇

(1 − 𝛼𝛼)𝛼𝛼
𝛼𝛼𝛼𝛼

𝛼𝛼𝑣𝑣Λ
𝑁𝑁𝜇𝜇

− 𝛼𝛼 − 𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎤

 

 
The eigenvalues is, 
 

𝜆𝜆 = �
𝛼𝛼𝑣𝑣Λ
𝑁𝑁𝜇𝜇

− 𝛼𝛼 − 𝜇𝜇,
Λ𝛽𝛽
𝑁𝑁𝜇𝜇

− (𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇),−𝜇𝜇,−𝜇𝜇 � 

 
With the condition that 
 
 𝜆𝜆 < 0 ,Λ𝛼𝛼𝑣𝑣 < 𝑁𝑁𝜇𝜇(𝜇𝜇 + 𝛼𝛼), and Λβ < Nμδ + γ + μ) 
 
Then all eigenvalues of the Jacobian matrix have negative 

real parts, this indicates that the disease-free equilibrium point 
is stable. This means that if the disease is introduced into the 
population, or if there are small perturbations in the number of 
infected individuals, the system will eventually return to the 
disease-free state. 

For the EE, there are non-zero populations in all 
compartments, indicating ongoing transmission of the disease. 
Thus, we compute the Jacobian Matrix and evaluate at each of 
the remaining endemic equilibrium points. At the point, 

 
(𝑑𝑑1, 𝛽𝛽1,𝑑𝑑1,𝑣𝑣1) = 

⎝

⎜
⎛ 𝑁𝑁

𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇
𝛽𝛽

,
 𝛬𝛬 𝛽𝛽 − 𝑁𝑁 𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)

(𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇)𝛽𝛽
,

 𝛾𝛾
𝛬𝛬 𝛽𝛽 − 𝑁𝑁 𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇) 

(𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇)𝛽𝛽 𝜇𝜇
, 0

⎠

⎟
⎞

 

 
The Jacobian Matrix is, 

 
From where the eigenvalues are obtained as, 
 

𝐸𝐸𝑖𝑖

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝜇𝜇
𝑎𝑎4𝛼𝛼𝑣𝑣 − 𝛽𝛽(𝜇𝜇 + 𝛼𝛼)

𝛽𝛽

−
Λ𝛽𝛽 − 2�𝑁𝑁(𝑁𝑁𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇) − Λ𝛽𝛽)(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)2 + Λ2𝛽𝛽2

2𝑎𝑎4𝑁𝑁

−
Λ𝛽𝛽 + 2�𝑁𝑁(𝑁𝑁𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇) − Λ𝛽𝛽)(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)2 + Λ2𝛽𝛽2

2𝑎𝑎4𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
It could be observed that the eigenvalues above are complex 

with the real part of  𝐸𝐸𝑖𝑖 ≤ 0 ∀𝑖𝑖 provided νq(δ + γ + μ) <

β(μ + ν) and 𝑁𝑁2𝜇𝜇(δ + γ + μ) + � Λ𝛽𝛽
(δ+γ+μ)

�
2

< Λ𝑁𝑁𝛽𝛽  

D. The Basic Reproduction Number (BRN) 
The basic reproduction number is the average number of 

secondary infections caused by a single infectious individual in 
an entirely susceptible population during his/her infective 
period. The next generation matrix approach is used to obtain 
𝑑𝑑0. Let 𝑋𝑋(𝑑𝑑) = (𝑑𝑑, 𝛽𝛽) and obtain that, 

 
𝑋𝑋′(𝑑𝑑) = ℱ(𝑑𝑑) − 𝒱𝒱(𝑑𝑑) 

 
where: 

ℱ(𝑑𝑑) = �
𝛽𝛽𝑑𝑑𝛽𝛽
𝑁𝑁

0
0 0

�  and   

𝒱𝒱(𝑑𝑑) = �
−𝜇𝜇 − 𝛿𝛿 − 𝛾𝛾 1 − 𝛼𝛼)𝛼𝛼

0 −
𝑁𝑁

𝑁𝑁(𝜇𝜇 + 𝛼𝛼) − 𝑑𝑑𝑣𝑣𝛼𝛼
� 

 
Evaluating the derivatives of 𝐹𝐹 and 𝑣𝑣 at the disease-free 

equilibrium point obtained above, yields 𝐹𝐹𝒱𝒱−1  as seen below: 
 
𝐹𝐹𝒱𝒱−1

= �−
𝛽𝛽𝑑𝑑

𝑁𝑁(𝛾𝛾 + 𝛿𝛿 + µ)
−

𝛽𝛽𝑑𝑑1 − 𝛼𝛼)
(𝛾𝛾 + 𝛿𝛿 + µ)(𝑁𝑁(𝜇𝜇 + 𝛼𝛼) − 𝑑𝑑𝑣𝑣𝛼𝛼)

0 0
� 

 
By solving the dominant eigenvalue of the next generation 

matrix 𝐹𝐹𝒱𝒱−1, we get the basic reproduction number to be, 
 

𝑑𝑑0 = −
𝛽𝛽𝑑𝑑

𝑁𝑁(𝛾𝛾 + 𝛿𝛿 + µ)
 

 

Therefore, the basic reproduction number of the given system 
of equations denoted by 𝑑𝑑0 is:  

 

𝑑𝑑0 = −
𝛽𝛽Λ

µ𝑁𝑁(𝛾𝛾 + 𝛿𝛿 + µ)
 

 
Effective Reproduction Number: The effective reproduction 

number 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒) is a critical epidemiological measure that offers 
insights into the transmission dynamics of infectious diseases, 
guiding public health responses during epidemics and 
pandemics. It signifies the average number of new infections 
generated by each infectious individual at a particular time 
during such outbreaks.  

The basic reproduction number is evaluated using the 

 

𝐽𝐽|�𝑆𝑆1,𝐼𝐼1,𝑅𝑅1,𝑉𝑉1� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑁𝑁𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇) + Λ𝛽𝛽

(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)𝑁𝑁
− 𝜇𝜇

Λ𝛽𝛽 − 𝑁𝑁𝜇𝜇(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)
(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)𝑁𝑁

0
0

 

−(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)
0
𝛾𝛾
0

 

0
0
−𝜇𝜇
0

 

−
𝛼𝛼𝑣𝑣(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)

𝛽𝛽
(1 − 𝛼𝛼)𝛼𝛼

𝛼𝛼𝛼𝛼
𝛼𝛼𝑣𝑣(𝛿𝛿 + 𝛾𝛾 + 𝜇𝜇)

𝛽𝛽
− 𝛼𝛼 − 𝜇𝜇

⎦
⎥
⎥
⎥
⎥
⎥
⎤
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inequality below, 
0 < 𝑑𝑑∗ < 𝑑𝑑 

 
Where 𝑑𝑑 is the susceptible when at DFE, 𝑑𝑑∗ is the susceptible 

when at EE 
 
Thus, we can have 

0 ≤
𝑑𝑑∗

𝑑𝑑
< 1                                                        (7) 

 
Multiply 12) by 𝑑𝑑0 implies 
 

0 ≤ 𝑑𝑑0
𝑑𝑑∗

𝑑𝑑
< 𝑑𝑑0                                                 (8) 

 
From equation 13), the relationship between 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒, 𝑑𝑑0 S, and 

𝑑𝑑∗ can be described using the following equation 
 

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑0
 𝑑𝑑∗

𝑑𝑑
 

 
Corresponding to the equilibrium points, we have two kinds 

of effective reproduction numbers depending on 𝑑𝑑𝑖𝑖∗, 𝑖𝑖 = 1, 2. 
 

𝑑𝑑 =
𝛬𝛬
𝜇𝜇

, 𝑑𝑑∗  = �𝑁𝑁
𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇

𝛽𝛽
, 𝑁𝑁

𝜇𝜇 +  𝛼𝛼
𝛼𝛼 𝑣𝑣

� 

 
Thus, 
 

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒1 = 𝑑𝑑0
 𝑑𝑑∗

𝑑𝑑
�

(𝑅𝑅0,𝑆𝑆,𝑆𝑆1∗ )=�− 𝛽𝛽Λ
µ𝑁𝑁(𝛾𝛾+𝛿𝛿+µ),𝛬𝛬𝜇𝜇,𝑁𝑁𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇

𝛽𝛽 �
= −1 

 
And 
 

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒2 = 𝑑𝑑0
 𝑑𝑑∗

𝑑𝑑
�

(𝑅𝑅0,𝑆𝑆,𝑆𝑆1∗ )=�− 𝛽𝛽Λ
µ𝑁𝑁(𝛾𝛾+𝛿𝛿+µ),𝛬𝛬𝜇𝜇,𝑁𝑁𝜇𝜇 + 𝜈𝜈

𝜈𝜈 𝑞𝑞 �
 

 

= −
𝛽𝛽(𝜇𝜇 + 𝛼𝛼)

𝛼𝛼 𝑣𝑣(𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇) 

E. Parameter Effects on the BRN 
Sensitivity analysis is used to obtain the sensitivity index that 

is a measure of the relative change in a state variable when a 
parameter changes. We compute the sensitivity indices of 𝑑𝑑0 to 
the model parameters with the approach used by [20]. These 
indices show the importance of each individual parameter in the 
disease transmission dynamics and prevalence. The sensitivity 
of a parameter, say 𝛽𝛽, of 𝑑𝑑0 is defined as, 

 

𝜉𝜉𝛽𝛽
𝑅𝑅0 =

𝜕𝜕𝑑𝑑0
𝜕𝜕𝛽𝛽

×
𝛽𝛽
𝑑𝑑0

                                                    (9) 

 
Therefore, the table 2 present the sensitivity indices of the 

parameters on Basic Reproduction Number and the Effective 
Reproduction Numbers (ERN)  

4. Discussion of Results 
In this study, we utilized a deterministic SIRV model to 

simulate Diphtheria transmission dynamics under different 
epidemiological conditions and intervention strategies. The 
model accounted for key aspects of disease natural history and 
immunological responses to infection and vaccination.  Fig. 2 
illustrates the dynamics of a disease spread over a 20-day 
period, with the infection rate peaking around day 20. It appears 
that the susceptibility rate, which is the proportion of the 
population that can be infected, also declines around the same 
time. This could be due to several factors, including the 
implementation of public health measures such as social 
distancing and mask-wearing, which reduce the likelihood of 
transmission. The vaccination rate remains relatively flat 
throughout this period, which suggests that the vaccination 
effort has not yet had a significant impact on the spread of the 
disease. This could be due to a variety of reasons, including 
limited vaccine supply, vaccine hesitancy, or logistical 
challenges in distributing the vaccine. The recovery rate shows 
a steady increase over this period, which suggests that the 
healthcare system is able to effectively treat infected 
individuals and that they are recovering at a faster rate 
synonymous to that at which new infections are occurring.  

As expected, increasing the recruitment rate Λ which adds 
new births/migrations to the susceptible compartment has a 
direct effect of increasing the size of the susceptible population, 
at least initially. More individuals entering the susceptible class 
provides additional fuel for potential infection spread through 
more available contacts for the disease to transmit to in the early 
stage as shown in Fig. 3. However, from Fig. 4 the model also 
shows an interesting consequential effect - the infected 
population also appreciates with a higher recruitment rate. 
While recruitment accelerates depletion of the susceptible pool 
by increasing its size, it also enhances infection transmission by 
providing renewed opportunities over time as the newly 
recruited individuals now mix with infectious contacts in the 
population.  This balance of short-term susceptible gain versus 
long-term infection amplification depends on the interplay 
between all rates over the full duration. A higher recruitment 
supports infections not just from initial expansion of S, but from 

Table 2 
Sensitivity analysis on Basic and Effective Reproduction Number 𝑑𝑑0 and 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 respectively 

Parameter Sensitivity Index  
on 𝑹𝑹𝟎𝟎 Per 1000 Parameter Sensitivity Index  

on 𝑹𝑹𝒆𝒆𝒆𝒆𝒆𝒆𝟏𝟏 Per 1000 Parameter Sensitivity Index  
on 𝑹𝑹𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 Per 1000 

Λ -0.16949 𝜇𝜇 -1 𝜇𝜇 -0.08331 
𝛽𝛽 -0.08475 𝛽𝛽 -1 𝛽𝛽 -0.05085 
𝛿𝛿 0.143637 𝛼𝛼 -1 𝛼𝛼 0.033898 
𝛾𝛾 0.143637 𝑣𝑣 -1 𝑣𝑣 0.050847 
𝜇𝜇 1.838552 𝛿𝛿 -1 𝛿𝛿 0.086182 

  𝛾𝛾 -1 𝛾𝛾 0.086182 
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its continued replenishment of unaware population. 
In Fig. 5 and 6, the transmission rate 𝛽𝛽 directly modulates the 

contact or mixing rate between susceptible and infected 
individuals. A higher 𝛽𝛽 means each contact is more likely to 
result in successful transmission. This amplified per-contact 
infectiousness allows the disease to propagate more efficiently 
through depletion of available susceptible individuals. We see 
mathematically in the equation describing the rate of change of 
susceptible population that β scales the negative term 
representing the loss of susceptible due to new infections. 
Consequently, during the initial exponential growth phase, a 
larger β generates a steeper decline in the S curve. Susceptible 
are converted to infections at an accelerated pace that outpaces 
recruitment into the class. Correspondingly, the positive 
infection-generation term depends on both prevalence of 
susceptible and infectiousness β. So, a higher β directly fuels 
more rapid accumulation of new cases, manifesting as 
appreciation of the 𝛽𝛽 curve. These dynamics unfold until 
susceptible diminish sufficiently to curb the conditioned growth 
enabled by abundant contacts. The quantitative differences 
emerge from β modulating the intensity of interactions between 
transmission classes. 

Basically, it’s intuitive that an increase in the recovery rate 
γ) of an infectious disease would lead to a decline in the infected 
population, as individuals are recovering from the illness more 
quickly. However, the relationship between recovery rate, 
susceptible population, and disease spread is more nuanced than 
it may initially appear as displayed in Fig. 7, 8 and 9. While a 
higher recovery rate does facilitate those in the infected 
category transitioning into the recovered group in shorter order, 
this does serve to expand the pool of susceptible individuals 
who are again at risk of contracting the disease. Those who have 
recovered now possess immunity but rejoin the segment of the 
population that is not actively infected but can potentially 
become infected upon contact with the virus or bacteria. What 
is often overlooked in only considering the direct effect of 
recovery on infection numbers is the indirect impact on disease 
transmission dynamics. A larger susceptible population 
translates to a greater number of potential future hosts for the 
pathogen. Even as the currently infected cohort decreases due 
to recovery, the increased reservoir of susceptibility means the 
conditions are ripe for transmission to accelerate again and push 
infection levels back up over the long run. 

At first glance, it would seem a rise in the natural mortality 
rate µ) would unambiguously diminish both the susceptible and 
infected populations of a disease. However, from Fig. 10 and 
11 the dynamics at play over different timescales tell a more 
intricate story. While an increased baseline death rate does 
immediately cull those in the susceptible class, reducing the 
pool of potential future infections, this effect is only transitory 
in nature. Within the first ten months or so, as individuals 
succumb to other natural causes unrelated to the disease, the 
size of the susceptible group is contracted. However, after this 
initial period, the interplay becomes markedly more complex. 
Not only are births and deaths ongoing, continually reshaping 
the demographic landscape, but the impact of mortality on 
transmission must be considered. A higher death rate does 

remove persons from the infected category in the short-term, as 
expected. But it also disrupts the forces that drive herd 
immunity over the long run. With more frequent turnover of the 
susceptible population due to natural losses, the opportunity for 
widespread exposure and development of population-level 
resistance is diminished. This leaves communities more 
vulnerable to resurgent outbreaks down the line. Moreover, 
mortality can facilitate transmission under certain conditions. If 
it preferentially claims the very young, old or immuno-
compromised – those less likely to spread disease – it may 
perversely concentrate the virus among the most active 
spreaders. 

It obviously counterintuitive that increasing disease-induced 
mortality rate δ could paradoxically serve to enlarge, rather than 
contract, the pool of individuals susceptible to infection over 
time. However, pondering the interplay between those who 
succumb to the illness, recover, and remain at risk of contagion 
illuminates a more intricate pattern are displayed in Fig. 12 and 
13. While a heightened case-fatality ratio removes more people 
from the recovering category by expedited demise in the short-
term, as expected, this also opens space for new susceptible 
hosts to take their places. As deaths open spaces in the 
population, births and migration fill these voids with fresh 
potential victims who lack prior immunity. What's more, a 
disease with elevated lethality is typically more effective at 
disrupting progression towards herd protection through natural 
infection over the long haul. By excessively culling those in 
recovery, it interrupts the community-wide exposure needed to 
confer widespread resistance. This resets the initial conditions, 
placing more persons back into the crosshairs of contagion with 
each resurgent wave. The combined consequence is ironically 
an inflation, rather than deflation, of the susceptible class 
available to fuel ongoing transmission cycles. Of course, 
disease-caused mortality remains unambiguously tragic for 
impacted individuals and families. However, zooming out to 
consider the population-level interplay of contingents over 
generations reveals counterintuitive phenomenon - how a 
harsher death toll can broadly undermine, rather than aid, 
control of spread in an unintended fashion.  

 

 
Fig. 2.  Growth rate of the different compartment with time days 
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Fig. 3.  Effect of the recruitment rate ʌ on the susceptible population 

 

 
Fig. 4.  Effect of the recruitment rate ʌ on infected individuals 

 

 
Fig. 5.  Effect of the transmission rate β on the susceptible population 

 

 
Fig. 6.  Effect of the transmission rate β on the infected population 

 

 
Fig. 7.  Effect of the recovery rate γ on the susceptible population 

 

 
Fig. 8.  Effect of the recovery rate γ on the infected population 

 

 
Fig. 9.  Effect of the recovery rate γ on the recovered population 

 

 
Fig. 10.  Effect of the natural mortality rate µ on the susceptible population 
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Fig. 11.  Effect of the natural mortality rate µ on the infected population 

 

 
Fig. 12.  Effect of the disease induced death rate δ on the susceptible 

population 
 

 
Fig. 13.  Effect of the disease induced death rate δ on the recovered 

population 

5. Summary and Conclusion 

A. Summary 
Through analyzing the dynamics of this SIRV model for 

disease transmission and exploring the impacts of varying key 
parameters, we have gained valuable insights into the 
epidemiological drivers of infectious outbreaks. Specifically 
considering Diphtheria as a case study helps contextualize some 
of the results. Higher transmissibility represented by increased 
β was shown to generate a more explosive rise in cases by 
amplifying each transmission event. However, this early benefit 
turned into a detriment as epidemics burnt out more quickly by 
depleting susceptible individuals. For a disease like Diphtheria 
that can spread rapidly in dense populations with low 
vaccination, controlling transmission through precautions 
becomes critically important.  Faster recovery γ flattened and 
contracted the epidemic curve by shortening each infection's 
duration. This emphasizes the role medical interventions play 

in containing spread, whether through timely availability of 
antitoxin treatment or other supportive clinical care for 
Diphtheria patients. Reducing time spent infectious aids in 
curtailing onward transmission potential. Larger epidemics 
correlated with higher recovered populations in the model, 
reflecting the reality that more cases mean more individuals 
acquire protective immunity through natural infection. Though 
severe outbreaks are undesirable, they do confer lasting herd 
protection if recovery provides lasting resistance as is the case 
for Diphtheria. Overall, this modeling exercise highlighted key 
factors influencing the dynamics of an infectious disease like 
Diphtheria spreading within a population. While simplified, it 
demonstrates how epidemiological relationships emerge from 
basic transmission principles incorporated into mathematical 
frameworks. Continued refinement and integration of 
additional realistic complexities holds promise for generating 
insights to guide evidence-based public health. 

B. Conclusion 
This research reinforces how simplifying epidemiological 

factors into isolated variables misses their interdependence and 
capacity to produce unanticipated, nonlinear effects at the 
population level over time. Transmission is a complex, 
systemic process influenced by myriad shifting dynamics, 
considering only proximate, short-term impacts of changes like 
higher recovery or mortality can obscure long-range 
consequences for disease evolution and spread. Broader time 
horizons and demographic influencers must be incorporated. 

Additionally, while counterintuitive findings do not negate 
the desirability of certain outcomes - e.g. reduced case fatality 
- they call for more nuanced strategies accounting for second-
order impacts. Goals like herd protection cannot be achieved 
through reductionism. In conclusion, diseases spread through 
populations based on relationships that defy simple 
characterization. Demanding theorists approach transmission as 
complex, dynamic and sometimes unexpectedly behaving 
phenomena seems a prudent stance, to avoid misguiding 
research or policy designs. Further modeling work building on 
foundations outlined here could generate valuable insight into 
optimizing control approaches. From the results presented and 
discussed, the following are deduced from the analysis: 

• Public health measures and vaccination efforts impact 
disease spread. 

• Initial increase expands susceptible population, 
leading to increased infection spread. 

• Higher rate leads to more efficient disease 
propagation. 

• Facilitates transition from infected to recovered but 
expands pool of susceptible individuals. 

• Initial decrease in susceptible population, but disrupts 
herd immunity over the long run. 

• Increased disease-induced mortality rate: enlarges 
susceptible population over time. 
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