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Abstract—Advances in genomic sequencing have left us with 

millions of genetic variants, the highest percentage of which 
constitutes missense mutation. Missense mutations are responsible 
for more than 50% of human-inherited diseases. The accurate 
characterization of which mutations lead to disease is an 
indispensable asset for the genomic era. Besides the endless 
potential for precision and personalized medicine, is the 
opportunity for timely and appropriate clinical interventions. To 
this end, the development of tools for predicting the functional 
impact of missense mutation remains an active area of research. 
In this review, we present a brief introduction and discussion on 
the state-of-the-art computational tools for predicting the 
functional impact of missense mutation. The focus is on the 
principles, features and methods employed by each tool. The 
methods employed were grouped into three; -Sequence-based 
methods, Machine learning methods and Graph-based methods. It 
was found that graph-based methods were able to capture the 
spatial structure of the protein in addition to features used by 
sequence-based and machine learning methods. Besides, graph-
based models create opportunities for structure comparison of the 
wildtype and mutant protein by leveraging on the emerging field 
of graph representation learning. 

 
Index Terms—missense mutation, pathogenicity prediction, 

graph, wildtype-mutant structure comparison. 

1. Introduction 
The human genome project has helped to identify millions of 

genetic variants.[1] The most common of these perhaps is 
missense mutation. Although it occurs as a result of the 
substitution of a single nucleotide base, missense mutations are 
responsible for several human-inherited diseases. A few of 
these diseases include Sickle cell anemia, caused by the 
substitution of the GTG for GAG in the sixth codon of the β-
globin gene [2]. Late-onset Alzheimer's disease associated with 
the substitution of cytosine for guanine, at nucleotide 2119 [3], 
and Cystic fibrosis caused by a mutation in the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene [4]. 

Despite the implications of missense mutations, only a few 
have been associated with functional significance. In general, 
the functional impact of missense mutation may be benign or 
pathogenic. Benign mutations have no effect on the function of 
the protein. Pathogenic mutations disrupt the function of protein  

 
and can lead to diseases. Other missense mutations which have 
not been characterized are referred to as variants of uncertain 
significance. 

Characterization of missense mutations is the foundation on 
which precision medicine will be built. It creates opportunities 
for timely and appropriate clinical interventions. Therefore, the 
functional impact of missense mutation prediction remains an 
active area of research. 

Several computational tools have been developed to predict 
the functional impact of missense mutation on proteins. This 
paper provides a comprehensive overview of standard tools 
with focus on the principles, features and methods employed by 
each of the tools. 

2. Principles Behind Pathogenicity Prediction Tools 
There are three main assumptions on which pathogenicity 

discrimination algorithms are based: Changes in the 
physicochemical properties, Evolutionary conservation 
features and Structural features 

A. Changes in the Physicochemical Properties 
The physicochemical properties of amino acids dictate their 

interaction with each other and consequently the shapes and 
function of protein [5]. The difference between two amino acids 
can be computed using 134 different physicochemical 
properties, some of which are size, charge, hydrophobicity, and 
polarity. The implication is that for a missense mutation, a 
change of physicochemical properties (with changed amino 
acids) in turn changes the behavior of the protein. Hydrophobic 
amino acids for example tend to cluster away in the core of a 
protein structure to stay away from water. Hydrophilic amino 
acids, on the contrary, remain at the surface in contact with 
water. Substituting a hydrophobic amino acid with a 
hydrophilic acid can destabilize protein structure. In the same 
vein, replacing a large amino acid with a smaller amino acid 
leaves a cavity in the protein structures. Physicochemical 
properties can be captured in missense mutation prediction 
algorithms using the following measures: the Grantham's 
distance, Sneath's index, Epstein's coefficient, Miyata’s 
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distance, Experimental Exchangeability and Local sequence 
context. 

Grantham Deviation (GD): GD measures the biochemical 
difference between two amino acids in terms of the 
composition, polarity and molecular volume. A large GD 
indicates a significant difference in the behaviour of the amino 
acid [6]. GD is given by: 

 
𝐷𝐷𝑖𝑖𝑖𝑖 =  �𝛼𝛼(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗)2 + 𝛽𝛽(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗)2 + 𝛾𝛾(𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗)2�1/2         (1) 

 
where c, p, v are composition, polarity, and molecular 

volume. α, β and γ and are constants. 
Sneath's index (SI): SI is a function of the dissimilarity index 

D of the 134 physicochemical properties [7]. D is obtained by 
taking the sum of properties not shared between two amino 
acids Epstein's coefficient: This is a function of polarity and 
size of amino acids [8]. It is given by: 

 
∆a→b= (δpolarity2 + δsize2 )1/2                                                     (2) 

 
for difference between small hydrophobic amino acid and a 

larger hydrophobic amino acid and  
 

∆a→b= (δpolarity2 + [0.5δsize]2)1/2                                            (3)  
      

for difference between polar residue and non-polar or large 
residue and a smaller amino acid 

Miyata's distance: It is a function based on volume and 
polarity [10]. The distance between amino acids ai and aj is 
given by: 

 
 

 dij =  �(∆pij/σp)2 + (∆vij/σv)2                                               (4) 

 
where ∆pi,j is value of polarity difference between replaced 

amino acids and ∆vi,j and is difference for volume; 
σp and σv are standard deviations for ∆pi,j and ∆pi,j. 

Experimental exchangeability (EX): EX captures the 
difference between two amino acids using experimental data to 
the behavior of the protein when an amino acid is replaced with 
another [9]. 

Local sequence context: The local context of an amino acid 
refers to the immediate amino acid flanking its on both sides. 
This is usually measured in windows. A window size of 5 refers 
to five amino acids on each side. The Local context captures the 
local mutation effect. 

B. Evolutionary Conservation Features 
Some tools exploit the rate of conservation of residues in 

certain positions across different species. This starts with 
filtering out homologs of the protein sequence in question. A 
multiple sequence alignment is then carried out to identify 
regions that have been conserved over a period of evolutionary 
time. Conserved regions are said to be structurally and 
functionally important [11]. Evolutionary conservation features 
used by missense mutation prediction algorithms include 

Conservation score, Co-evolution strength, Evolutionary 
Preservation, Sequence profiles, Phylogenetic Tree Analysis, 
Evolutionary distance, Grantham Variation (GV), Position-
specific entropy, Phylogenetic profiles and 2-gram features. 

Conservation score: The conservation score of a position is 
a measure of how preserved that position has been in terms of 
the amino acid change [12]. Algorithms such as Amino Acid 
Substitution Matrices, and Shannon Entropy are used to 
compute conservation score. Mutations in highly conserved 
regions are classified as pathogenic. 

Co-evolution: This measures the strength of occurrence of 
amino acids at two positions over an evolutionary period [13].  

Evolutionary Preservation [14]: This is a measure of the 
evolutionary time that an amino acid has been in a particular 
position Sequence profiles: This shows the frequency of the 
amino acid at the position of mutation over a set of homologues. 

Phylogenetic Tree Analysis: Phylogenetic tree is a visual 
representation of the evolutionary relationship among proteins 
of the same family [15]. Deviation from the unique pattern 
provides an understanding on the pathogenicity of the mutation. 

Evolutionary distance: This is a measure in evolutionary 
space of the level of divergence of the mutant protein sequence 
from the wildtype sequence. 

Grantham Variation (GV): GV is a function of the variability 
of composition, polarity and molecular volume of amino acid 
across protein sequences of the same family. A low GV shows 
conserved regions. 

Position-specific entropy: This measures the level of 
variability of amino acids in the position of mutation [16]. A 
low entropy reflects a conserved position 

Phylogenetic profiles (PP): PP is a vector representation of 
the observed variability of amino acids in a particular position 
across different species. 

2-gram features: 2-gram features is the frequency at which a 
pair of amino acids occur together in specific positions. 

C. Changes in Structural Features 
Missense mutation sometimes disrupts the native structure of 

proteins. This can mean the breaking of important chemical 
bonds, such as the disulphide bond or hydrogen bond, or   loss 
of interactions such as protein-protein interactions, protein-
ligand interaction or change in protein conformation. Tools that 
exploit disruption in structure often access the effect of such 
structural changes on the function of protein. Missense 3D 
predicts pathogenicity by analyzing structural disruptions 
caused by the mutation. Measures of structural changes include 
solvent accessibility, B-factors, secondary structure, protein 
stability, conformational flexibility, Root Mean Square 
Deviation (RMSD), Template modelling (TM) scores, protein 
domains, proximity to splice sites and local context. 

Solvent accessibility: This is a measure of the surface area of 
the amino acid in contact with solvent. The hydrophobicity of 
each amino acid determines its Solvent accessibility. 

B-factors: This refers to the vibrational amplitude of each 
atom within the amino acid. 

Secondary structure: This shows if the mutated residue is in 
an alpha-helix, beta-sheet, or coil structure. 
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Proximity to active sites or binding interfaces: How close is 
the position of mutation to functionally important regions? 
Protein stability: Stability is a measure of  the difference in free 
energy (ΔΔG) between the mutated and wild-type proteins.  

conformational flexibility: Measures the ability of the protein 
to maintain the native 3D structure in different conformations 

RMSD:  This quantifies the structural similarity between two 
proteins by pairwise comparison of the atoms. It is given by: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ���1
𝑁𝑁
� ∗ ∑(𝑑𝑑)2�                  (5) 

 
where N is the number of atoms being compared, and d is the 

distance between the corresponding atoms 
Template modelling (TM) scores: TM-score quantifies the 

structural similarity between two protein structures, factoring in 
the arrangement of the secondary structures  

Protein domains: The structural and functional importance of 
the domain where the mutation took place informs the 
pathogenicity of the mutation.  

Proximity to splice sites: Mutations on sequences that defines 
the boundaries between introns and exons affect the mRNA 
splicing process 

Local context: The structural Features and interactions 
around the position of mutation provides light on the role of the 
residue in the protein structure. 

3. Classification of Pathogenicity Prediction Tools 
Missense mutation pathogenicity prediction tools can be 

classified into three, namely, sequence-based tools, Machine 
learning tools and Graph-based tools. Each class of tool differs 
based on the approach, principles and features employed. 

A. Sequence Based Tools 
Sequence based tools work with protein sequences. They 

make use of features such as evolutionary conservation score, 
position specific scoring Matrices, pretrained language models, 
physicochemical properties of the amino acids and pairwise 
amino acid substitution likelihood. 

The Sorting Intolerant from Tolerant (SIFT) [17] is the first 
model developed to determine the impact of missense mutation.  
Evolutionary information is used to predict the effect of a 
missense.  A multiple sequence alignment of a homologous 
protein is carried out to identify conserved regions. The 
conservation score at a position c is as shown in equation (6). 
Mutations in highly conserved regions are predicted as 
pathogenic while those in less conserved regions are predicted 
as neutral. Sift score ranges from 0 to 1. Scores between 0 and 
0.05 are classified as pathogenic. 

 
𝑅𝑅𝑐𝑐 = 𝑙𝑙𝑙𝑙𝑙𝑙220 − ∑20𝑎𝑎𝑎𝑎 𝑝𝑝𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐               (6) 
 

where pca is the frequency of occurrence of amino acid a in 
position c. 

Stone and Sidow [18] combined both physicochemical and 
evolutionary features in Multivariate Analysis of Protein 
Polymorphisms tool (MAPP). The evolutionary features of the 

protein sequence are determined with multiple sequence 
alignment and phylogenetic tree construction. Based on the 
phylogenetic correlation, weights are applied to each sequence. 
Each of the amino acids is represented by the alignment score. 
The Mean and variance scores of physicochemical properties 
such as polarity, volume and hydropathy of each amino acid are 
calculated. The deviation from each property is calculated and 
converted to a single score as a measure of the mutation. 

Mathe et al. in Align-Grantham Variation and Grantham 
Deviation (Align-GVGD) [19] combined both evolutionary 
conservation and physiochemical properties together. For 
physicochemical properties, the Grantham difference is 
computed between the substituted amino acids. A multiple 
sequence alignment of orthologous sequences is used to 
determine evolutionary features. The mutation score known as 
the Grantham Difference score (GD) is a function of both 
evolutionary score and Grantham differences. GD assigns a 
class from C0, C15, C25, C35, C45, C55, or C65 to each 
mutation. C0 implies a lower impact and C65 an higher impact.  

Reva et al [20] categorized functional impact of missense 
mutation based on evolutionary conservation features in 
Mutation Assessor. A multiple sequence alignment of 
homologous protein is carried out; A conservation score based 
on rate of substitution among homologous protein is computed. 
the functional specificity score is computed as   a function of 
conservation pattern in protein subfamilies. The functional 
impact score is computed by combining the conservation score 
and the specificity score. 

Choi et al in the design of the protein variation effect analyzer 
(PROVEAN) [21] introduced an alignment-based score. The 
alignment-based score is a measure of the evolutionary features. 
It is obtained by comparing the change in sequence similarity 
of the wildtype and mutated protein sequences to aligned 
homolog protein sequence. A score of less than -2.5 implies 
pathogenic while scores >-2.5 are considered neutral. 

Tang and Thomas [21] included evolutionary features using 
the Hidden Markov Models (HMMs) in the design of Protein 
Analysis Through Evolutionary Relationships (PANTHER). A 
multiple sequence alignment of homologous protein carried 
out. The phylogenetic tree obtained is traversed upward from 
the wild-type amino acid. This continues until a different amino 
acid is found. The distance between the wildtype amino acid 
and position where change is observed is the evolutionary path 
of the wildtype amino acid. Longer path indicates higher 
pathogenicity. 

Malhis et al. in LIST-S2 [23] combined output from three 
modules, The Position Mutation Module (PMM) Position 
Module (PM) together. PMM and the mutation module, PMM 
assesses how conserved the mutant residue is in homologous 
sequences. The PM module evaluates the rate of change of 
amino acid in the mutated position. The mutation module (MM) 
finally assesses the likelihood of replacing the wildtype amino 
acid with the mutant amino acid. 

B. Machine Learning Methods 
Machine learning approaches combine sequence-based 

features and structural features to build a classification model. 



Temilola et al.    International Journal of Research in Interdisciplinary Studies, VOL. 3, NO. 8, AUGUST 2025                                                                               73 

Structural properties such as changes in protein stability, 
disruption of protein-protein interaction, disruption of the 
disulfide bonds are employed. Machine learning models such 
as Random Forest Algorithm, Support Vector machine and 
decision trees have been used.ML methods offer improved 
performance over the sequence-based approach. However, they 
rely on feature engineering. Also, integrating features from 
different sources of data is complex and laborious. The use of 
Deep Learning overcomes the challenge of feature extraction in 
traditional machine learning method [24]. 

Steinhaus et al. [25] in Mutation Taster combined 
evolutionary conservation features, amino acid properties, 
functional location of mutation, structural disruptions of splice 
sites and protein domain into a Random Forest classifier. The 
older version uses a Naive Bayes classifier  

Bao et al. [26] in nsSNPAnalyzer combined evolutionary 
features, Physicochemical properties of amino acid and 
structural features into a Random Forest classifier. The polarity 
of the neighborhood of the substituted amino acid, the 
secondary structure, and the solvent accessibility defines the 
structural features of the protein. 

Niroula et al., in Prediction of Pathogenicity of Missense 
Variants (PON-P2). [27] combined evolutionary sequence 
conservation features, physicochemical properties of the amino 
acid, Gene Ontology (GO) annotations and the functional 
feature of the location of the variants into a random Forest 
classifier. 

Pejaver et al in the design of Mutation Prediction 2 
(MutPred2) [28] extracts 1345 features from sequence-based 
features, substitution-based features, PSSM-based features, 
conservation-based features, homolog profiles and changes in 
predicted structural and functional properties into a feed 
forward Neural Network 

Capriotti and Fariselli, in Predictor of Human Deleterious 
Single Nucleotide Polymorphisms (PhD-SNP) [29] combined 
sequence-based features. Structural features with 
physicochemical properties of the amino acid into a Support 
Vector classifier to make prediction. Given a list of SNVs, the 
tool analyses each variant by first generating a 25-element 
vector based on the five closest nucleotides to the mutated 
residue. The conservation indexes for the positions around the 
mutation site are extracted. The PhyloP7 and PhyloP100 scores 
are used to generate a 10-element vector, which represents the 
conservation features. This is added to the 25-element vector 
encoding for the sequence features.  

Quinodoz, et al., in Combined Annotation Dependent 
Depletion (CADD) [30] combined more than 60 genomic 
features into one. The features derived from surrounding 
sequence context, gene model annotations, evolutionary 
constraint, epigenetic measurements, and functional 
predictions. Given a variant, CADD computes a CADD score 
from all the annotations. CADD score is used to rank human 
single nucleotide variants, short insertion and deletions.  

Carter et al., [31] combined both functional enrichment 
analysis of mutations and statistical hypothesis in the design of 
Variant Effect Scoring Tool (VEST). The core classifier is the 
random forest algorithm. VEST score ranges between 0 and 1. 

The significance of each score is tested via the Statistical 
hypothesis testing framework.  

Capriotti et al, 2013 in SNPs and Gene Ontology SNPs and 
Gene Ontology (SNPs&GO) [32] combined evolutionary and 
Gene Ontology features into a support Vector Machine. Given 
the amino acid in question, a 20-element vector is used to 
uniquely represent the substitution, with a value of -1 for the 
wild-type residue and 1 for the mutant residue. Other positions 
representing the remaining 18 amino acids are represented with 
zero. The second twenty element vector records the frequency 
of the frequency of the residue around the mutated residue. The 
sequence profile features are extracted from BLAST search and 
combined with GO annotation into an SVM classifier.    

 Alirezaie in ClinPred [33] combined the Allele frequencies 
(AFs) of each variant in different populations with prediction 
scores from 16 other tools into random forest and gradient 
boosting models. Variants not represented on the gnomAD 
database are assigned an AF of zero.  The model was trained 
using data from ClinVar database with prediction score ranging 
from 0 to 1. The threshold is set to 0.5.   

Jagadeesh et al., [34] combined 7 features from standard 
measures of base-pair, amino acid, genomic region, and gene 
conservation with 298 features from multiple sequence 
alignment of mammals and the 99 primates with pathogenicity 
scores from 9 other tools into a gradient boosting tree classifier 
in the design of Mendelian Clinically Applicable Pathogenicity 
(M-CAP).  

Deleterious Annotation of genetic variants using Neural 
networks (DANN) [35] is an improvement over CADD. In 
order to capture linear relationships among features, DANN 
trained a deep neural network (DNN) over features derived 
from surrounding sequence context, gene model annotations, 
evolutionary constraint, epigenetic measurements, and 
functional prediction. Compared with DANN, it achieved a 
19% relative reduction in the error rate and 14% increase in the 
area under the curve (AUC). 

Hopf et al., [36] in Evolutionary Variance Mutation 
(EVmutation) compute evolutionary conservation features by 
accessing how well mutations from different site evolve 
together. The Markov model is used to compute evolutionary 
energy. Stochastic Gradient Boosting predicts the pathogenicity 
score   

Jiaying et al., combined five sequence-based, six structure-
based, four dynamics-based features and a new evolutionary-
based feature that measures conservation score by MSA of 
different species into an XGBoost classifier in the design of 
LYRUS [37] 

Alpha Missense [38] is a deep learning model. It predicts the 
pathogenicity of missense mutation by combining structural 
features with evolutionary features. By looking at the potential 
disruption a missense mutation may confer on protein structure, 
it classifies mutation impact. 

C. Graph-Based Methods 
In graph-based models, Protein structures are converted into 

graphs. The advantage of this method is that the models are able 
to capture the connections between the amino acids and the 
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spatial structure of the protein. Besides, graph-based models 
create the opportunity for structure comparison of wildtype and 
mutant protein. This has the potential of providing insight into 
how structural disruptions affect protein function. The impact 
of mutation is measured using network centrality measures such 
as node degree, clustering coefficient, spectra properties. The 
difference in the network parameters of the wildtype is 
compared to the mutant to make predictions.  

Sotomayor-Vivas et al., [39] worked with a set of proteins. 
Every amino acid on each of the proteins was mutated to the 
other amino acids. For each mutation, the corresponding mutant 
structure was used to construct the mutant network. A 
perturbation network was then obtained for each mutant by 
comparison to the corresponding wildtype. The size of the 
network (nodes), number of edges, sum of edge weights, and its 
diameter were used to make predictions. 

Yamuna and Karthika [40] modelled each amino acid as a 
directed network using A, T, G, C codons as nodes. The sum of 
the in degree and out degree of each node is computed. The 4-
digit output is a pattern that uniquely identifies each amino acid, 
a deviation from this is classified as a missense mutation. 

The drawback of this approach is that the computational cost 
of computing centrality measures increases as the size of the 
graph increases [41] and cannot adapt to new mutation. Graph 
representation learning overcomes the challenge by learning 
meaningful representation from the graph and the node features. 

gMVP (Zhang, [42] is a graph attention neural network 
mode. It uses a graph to represent a variant and its protein 
context. The node features include sequence conservation and 
local structural properties of the protein. It uses coevolution 
strength as edge features. All information is pulled towards the 
variant residue in a star -topology network approach. The model 
considers only 128 amino acids flanking the mutated residue. 
The drawback with this approach is that it does not cater for 
long interaction effect.  Also, the graph generated does not 
reflect the structural connectivity of the protein residues and 
atoms. 

4.  Conclusion 
The development of missense prediction algorithm remains 

an active area of research as the practice of medical science 
gradually shifts the focus from traditional curative medicine to 
preventive medicine. The need to develop tools that can 
improve prediction accuracy will be needed more than ever 
before. This work presents the features, techniques and 
principles employed by each missense mutation prediction tool. 
The review shows that sequence-based tools, while efficient, 
perform poorly when mutation disrupts structures. Machine 
learning models solve the problem by combining both sequence 
and structural features into a classifier. Machine learning 
methods, however, suffer from the problem of feature 
engineering and integration of multiple sources of data. An 
emerging approach is graph-based tools. Graph-based tools 
provide an avenue to represent the complete spatial structure of 
protein. This representation allows for comparison between the 
wildtype and mutant protein structure. Although graph-based 
missense mutation prediction tools compared wildtype-mutant 

structure using computationally intensive centrality measures, 
future graph-based predictors will leverage advances in graph 
representation learning to determine the pathogenicity of 
missense mutation. 
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