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Abstract— The process of identifying of drug-target (DT) 

interactions is an integral part of the drug discovery process. Drug 
discovery is a process which focuses on determining new 
compounds that can be used to cure and treat diseases. Embedding 
is the process of converting high-dimensional data to low-
dimensional data by representing it in the form of a vector. Drug 
Target sequences need to be transformed into a matrix before they 
can be fed into a deep learning model. Since the performance of 
embedding techniques directly affects the quality of the deep 
learning models and thus the accuracy of the predicted values of 
drug target binding affinity, we compare the performance and 
effect of various embedding techniques used for target embedding 
on deep learning models. Here, the embedding techniques whose 
performance has been compared are PLUSRNN Embedder, 
ProtTransBertBFD Embedder, Beppler Embedder, CPCProt 
Embedder and SeqVec Embedder. 

 
Index Terms— drug target binding affinity, drug target 

interaction, drug discovery, embedding techniques, graph 
attention network. 

1. Introduction 
The strength of the binding (interaction) of a ligand and its 

receptor is described by affinity. When discussing protein–drug 
interactions, the binding affinity could be a measurement of 
how well the drug binds to the protein. Binding affinity suggests 
the strength that drug-target pairs interaction holds. With 
binding, drugs can have a positive or negative influence 
affecting the disease conditions, on functions applied by 
proteins. By interpretation of drug-target binding affinity, it's 
attainable to seek out possible drugs that are ready to inhibit the 
target/protein and benefit many other bio informatics 
applications. Drugs elicit their desired remedial effects by 
interacting with particular disease-related targets. Once a target 
is discovered, drug molecules are screened against the target to 
spot those who interact with the target and modulate its activity. 
Having the ability to accurately predict drug–target interactions 
(DTIs) and DTBA is crucial in early drug development and 
through drug repurposing endeavors. Here, we glance at some 
recent research developments during this space. As a result, 
DTA prediction has received such lots attention within the past 
few years. Drug target interaction may be defined as the binding 
of a drug to a target location because of which a change in its 
behaviour/function are often observed. Drugs work by 
interacting with target proteins to activate or inhibit the process  

 
of the targets. Thus, identifying novel drug-target interactions 
(DTIs) is a necessary step within the drug discovery field. A 
drug or medicine is defined as any chemical substance that 
brings a few physiological changes within the chassis when it's 
consumed, injected or absorbed. The development of new drugs 
that overcome resistance mutations requires an understanding 
of the factors that contribute to resistance. In some cases, an 
examination of a crystal structure of the drug-bound molecular 
target is enough to envision how the mutation leads to 
resistance. However, Gabel et al. [1] showed that RF-score 
failed in virtual screening and docking tests, speculating that 
using features like co-occurrence of atom-pairs over-simplified 
the outline of the protein-ligand complex and led to the loss of 
knowledge that the raw interaction complex could provide 
round the same time this study was published, deep learning 
began to become a preferred architecture powered by the rise in 
data and high capacity computing machines challenging 
machine learning methods. 

 

 
Fig. 1. 

2. Literature Review  
The drug development is difficult, expensive and success 

rates are low. Thus, drug target interactions and their binding 
affinities identification and predication has become an 
important step in the initial stages of drug discovery. In the 
meantime, many computational methods have been discovered 
to minimize the errors of potential DTIs approaches. 
AI/ML/DL-based Drug discovery and interaction methods have 
been earlier used in many research projects and have shown 
good results. However, none of these models are error-free, all 
of them face a few limitations that could require 
changes/improvements. 

These computational approaches focus on scaling down the 
search space for DTIs and enlighten drug-target operational 
condition. This observation accentuated the requirement for: 
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new, more appropriate drug targets, which will upgrade the 
capabilities of the drug discovery and screen an outsized 
number of medications within the very initial phase of drug 
discovery process, thus guiding toward those drugs that will 
reveal better efficacy. Due to this, procedures that predict DTIs 
and most importantly, drug-target binding affinities (DTBA) 
are highly popular.  

Over the last thirty years, various papers that predict DTIs or 
their affinities have emerged varying from ligand/receptor-
based methods (Cheng et al.; Wang et al.) [2], [3] to gene 
ontology-based (Mutowo et al.) [4], [5], text-mining-based 
methods (Zhu et al.) [6], and reverse virtual screening 
techniques (inverse-docking) (Lee et al., 2016; Vallone et al.; 
Wang et al.) [7]-[9]. Development of such methods continues 
to be ongoing as each method suffers from different kinds of 
limitations. More newer approaches established AI, network 
analysis, and graph mining (Emig et al.; Ba-Alawi et al.; Luo et 
al.; Olayan et al.,) [10]-[12], and ML and DL techniques (Liu 
Y. et al.; Rayhan et al.; Zong et al.; Tsubaki et al.) [13], [14] to 
develop prediction models for DTIs and Drug discovery.  

Halogen bond (Zhijian Xu, Zhuo Yang) [15], [16] has 
attracted a decent deal of attention in the past few years for lead 
generation optimization aiming at improving drug-target 
binding affinity. Therefore, we recommend that albeit 
halogenation may be an important approach for improving 
ligand bioactivity, it should be given more recognition in the 
near future to the appliance of the halogen bond for ligand 
ADME/T property optimization. 

 Thus, several exhaustive latest reviews summed up the 
various studies that predict DTIs using various techniques and 
AI/ML-based methods as presented in Liu Y. et al. (2016) [17], 
Ezzat et al. [18], Rayhan et al. [19], Trosset and Cavé, and Wan 
et al. [20], [21]. 

 This approach suffers from two major limitations including: 
(1) the shortcoming to differentiate between true negative 
interactions and instances where the dearth of knowledge or 
missing values impede predicting an interaction, and (2) it 
doesn't reflect how tightly the drug binds to the target which 
reflects the potential efficacy of the drug.  

Experimental results show that our Deep Learning model can 
give us a better DTI prediction performance if a few changes 
are considered. In the future, we would like to work on more 
protein compounds and hope for better target-interaction 
results. 

We have tried to work on this project to reduce the time, cost 
and probability of failure of drug discovery process, To propose 
a method that takes into consideration both local chemical 
context and topological structure of both targets and ligands to 
calculate drug target affinity, To perform a comparison of 
different embedding techniques, To perform feature extraction 
and selection on matrices obtained after applying embedding, 
Predicting the binding affinity value based on the embeddings 
of the drug and the target. 

3. Methodology  

A.  Dataset 
We have used the Davis dataset [22], [23] which contains 

linkage of 442 kinases with 72 kinase inhibitors covering >80% 
of the human catalytic protein kinome. 

Kinase is a kind of catalyst (a protein that paces up substance 
responses in the body) that adds synthetics called phosphates to 
different atoms, like sugars or proteins. This might make 
different particles in the cell become either dormant or active. 

Unlike most research papers that treat drug-target binding 
affinity as a binary problem, in this study we are treating it as a 
Regression problem. We have split the dataset into 3 parts- 
training dataset, validation dataset and test dataset for the 
purpose of this study. As of writing this paper the Davis dataset 
contains 25,772 DTI pairs, 68 drugs, 379 proteins. It has fields 
for ‘Drug_ID’, ‘Drug’ containing SMILES notation of the 
compound, ‘Target_ID’, ‘Target’ and ‘Y’ which is the value of 
drug target binding affinity. 

B. Embedding 
Embedding is the process of converting high-dimensional 

data to low-dimensional data by representing it in the form of a 
vector. We transformed each protein target sequence into a 
matrix so that it can be fed into a deep learning model such that 
each row gives the embedding of a protein. Then, the matrix is 
passed as input to a fully connected network of molecular 
graphs containing 2 layers of 1024 and 128 neurons to extract 
features from target proteins. 

The novel idea behind this paper is comparing different 
embedding techniques suggested to embed proteins and 
compare their performances with a GAT network as the 
embedding techniques greatly influence the quality of deep 
learning models. 

Here, the embedding techniques whose performance has 
been compared are PLUSRNN Embedder [24], 
ProtTransBertBFD Embedder [25], Beppler Embedder [26], 
CPCProt Embedder [27] and SeqVec Embedder [28]. 

C. Encoding 
The Drug Molecules have been represented through the 

SMILES sequence (Simplified Molecular-Input Line-Entry 
System) which is a system that uses line notation to represent 
the structure of chemical compounds [29]. A SMILES string 
could be further converted into different formats before feeding 
into the machine learning or deep learning model such as 
molecular fingerprint, one-hot encoding, or word embedding.  

Since the focus of this paper is comparing the performance 
of embedding techniques used on target molecules, we only use 
one-hot encoding to encode drug molecules.  

In one hot encoding, each atom is distinguished from the 
other using a unique integer allotted to each atom. The result 
will contain ‘1’ in a cell used to uniquely identify that atom and 
‘0’ in others. 

D. Model 
1) Graph Attention Networks  

The attention mechanism in machine learning/deep learning 
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[30] allows the neural network to focus on more important or 
more relevant parts of input. This further helps us to achieve 
more accurate predictions.  

Graph attention networks [31] operate on graph structured 
data and take into account features of neighbouring nodes, 
assigning different importance to each neighbour’s 
contribution, which makes GATs better than GNNs. They work 
in an anisotropic manner without requiring to compute any 
costly matrix operation. Thus, here we use the GATs as in a 
molecule each atom has varying degrees of affect on its local 
atoms depending on its chemical properties and spatial 
arrangement. The equations involved in the model are as below: 

 
evu = leaky_relu (W. [hp , hu])           (1) 
avu = softmax(evu) = exp(evu)/Σu∈N(v)exp(euv)      (2) 
Cv= elu[ Σu∈N(v) avu.W.hu]             (3) 
 

 

 
Fig. 2.   

 
2) Early stopping 

Early stopping [32] was used to prevent overfitting and also 
reduce training time consumption. Here, we set the mode as 
‘lower’ i.e. lower metrics will suggest a better model and 
‘patience’ as 20 which means that if the performance metrics 
does not improve for 20 consecutive iterations, the process will 

be terminated. 
3) Evaluation metrics 

Here, we have used three evaluation metrics that are usually 
used in regression tasks to evaluate the performance of various 
embedding techniques. These include Mean Square Error 
(MSE), Root Mean Square Error (RMSE) and R squared. 

MSE: Mean Square Error (MSE) is the mean of the 
difference between the actual value and the predicted value 
squared. 

 
MSE =1/nΣi=1(yi − y′i)2              (4) 
 
RMSE: Root Mean Square Error can be defined as the 

estimate of how well a regression line fits the data points.  
 
RMSE =√1/nΣi=1(yi − y′i)2            (5) 
 
R Squared: R squared, also called the coefficient of 

determination demonstrates the proximity of the line plotted by 
plotting the predicted values to the actual values. 

 

 
Fig. 3.  Data analysis 

4. Discussion and Conclusion 
Here, we have compared various embedding techniques used 

for embedding target sequences in machine learning and deep 
learning approaches. As we can see, the SeqVec Embedder 
approach gives the best performance in terms of MSE and 
RMSE.  

A.  Limitations and Future Studies  
One major drawback of predicting drug target binding 

affinity using deep learning is the lack of data for negative cases 
of drug target binding affinity. Another loophole is the large 
number of unknown/ undiscovered drugs. 

While this paper compares different protein embedding 
techniques and their effect on deep learning models. In future, 
this work can be extended to comparing different embedding 
techniques used for drug molecules and their effect on deep 

Table 1 
Result 

Embedding Technique MSE RMSE R2 
PLUSRNN Embedder 0.36 239239396586964 0.6019903603595905 0.44108237816154794 
ProtTransBertBFD Embedder 0.37213957438783835 0.6100324371603844 0.4260493062985934 
Beppler Embedder  0.3516710651477847 0.5930186043858866 0.45761787864591097  
CPCProt Embedder 0.4231 0.65046137471 0.49235786421545652 
SeqVec Embedder 0.3146 0.56089214649 0.4346547891356645 
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learning/machine learning models. 
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